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Abstract

This paper concerns the calculation of the sound fields which are generated when a vortical gust,
convected in a supersonic mean flow, strikes the leading edge of a fan blade or aerofoil. Inviscid linear
theory is applied, with the blade modelled as an infinite-span flat rigid plate, and a gust of arbitrary form is
considered. By application of Fourier transforms the boundary value problem for the velocity potential is
solved, leading to an integral expression for the generated sound field. This expression is applicable
everywhere inside a Mach wedge. For gusts localized in the span direction, a farfield approximation is
derived which is valid inside a Mach cone, and which is of simple enough form to be evaluated analytically
for specified gust shapes. The new feature of this analysis is the consideration of an arbitrary gust form:
previous authors have only ever considered the properties of specific gusts, focusing principally on
harmonic gusts and jets.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of this paper is to calculate the sound field generated by the interaction between a semi-
infinite flat plate aerofoil and an arbitrary vortical gust convected in a supersonic mean flow. This
problem is of practical interest, as it can be related to the calculation of sound fields generated by
modern high-performance aeroengines. In such engines an important mechanism of noise
generation is the interaction between blades and convected vorticity, as when fan blades encounter
ingested turbulence or downstream blades encounter vortices shed by upstream blades. A
comprehensive investigation of such a complicated system relies on a great deal of computational
and experimental work, and so analytical treatments of simple model problems related to
individual components of the system are important in providing physical understanding and
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simple test problems for the aeroacoustic computer codes. The outer regions of the fan blades may
move at supersonic speeds relative to the surrounding airflow; thus the study of the supersonic
regime is relevant.

In the current study a single fan blade is isolated, and this blade is modelled as a flat plate
assumed to lie within a steady mean flow. The case of a subsonic mean flow has been considered in
great detail by previous authors. Modelling the aerofoil as a flat half-plane is an approach which
has been widely utilized and which leads to analytical results. Various authors have considered
such a model, taking a specific incoming gust as the known data for the problem. A brief summary
of this work is given by Chapman [1], who goes on to calculate formulae for the sound field
generated by an arbitrary gust, thus unifying and generalizing the previous results. Examples of
the use of these general formulae are given by Chapman [2].

Fewer results are available for the acoustic problem in the case of a supersonic mean flow.
While the aerofoil gust interaction problem has a history of over 50 years, most of the early work
is concerned with calculating the magnitude of the forces generated on the aerofoil surface. An
excellent review of this work is given by Miles [3]. The early part of his text provides a summary of
the linearization of the system, with which this paper assumes the reader is familiar. Later parts of
Miles’s text contain many results which are of some relevance to the problem considered in the
present paper, but while the prime concern here is the pressure field generated throughout the
fluid, Miles sets the co-ordinate normal to the aerofoil surface equal to zero at an early stage, so
that he only ever calculates the pressure at the surface. This he uses to calculate the values of the
variables in which he is primarily interested: the lift and the pitching moments. It appears that in
the early literature the acoustic pressure field was of little interest, although the field for one
particular gust has been treated: a two-dimensional problem with a sharp-edged gust is considered
by several authors, the earliest probably being Strang [4]. The first consideration of the acoustic
field in a three-dimensional problem was by Ffowcs Williams and Guo [5], where the gust
considered was a cylindrical jet perpendicular to the aerofoil surface. Guo [6–9] considered this
problem in great detail, examining not only the generated sound but also the unsteady loading on
the aerofoil and the radiated energy. For similar gusts Peake [10] modelled the aerofoil as a flat
quarter plane, thus examining corner effects. Peake [11] went on to consider a flat-plate aerofoil of
finite span and chord interacting with a harmonic gust.

This paper utilizes the simplest possible model for the blade, the half-plane. In parallel to the
subsonic work of Chapman [1], general formulae for the interaction of the aerofoil with an
arbitrary gust are derived; these generalize the previous supersonic half-plane results. For ease of
comparison the notation adopted is largely identical to that of Chapman [1], though the definition
of a set of Doppler-adjusted co-ordinates is slightly different due to the difference between the
flow regimes. In Part 1 of this paper the general formulae for the sound fields (which may be fully
three dimensional) are derived, while in Part 2 (Ref. [12]) these formulae are applied to a family of
gusts which give rise to two-dimensional sound fields, such fields being easily analyzed and
understood.

The analysis in this paper begins in Section 2 with a full description of the physical system to be
studied and a discussion of the boundary value problem which describes this system. An analytical
solution to the problem is derived in Section 3 by the application of Fourier transforms. In
Section 4 a simple approximation to this complicated solution is derived, which is valid in the
acoustic far field for a certain type of gust. A brief example of the application of the derived results
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is given in Section 5, followed in Section 6 by a general discussion of the results and possible
future work.

2. The physical system

The physical system to be considered is sketched in Fig. 1, which shows part of a flat plate
aerofoil of infinite span and semi-infinite chord, located within an inviscid fluid of density r0: A
wind tunnel frame of reference is chosen, so that the aerofoil is stationary and the fluid exhibits a
supersonic mean flow of speed U in a direction normal to the aerofoil leading edge, such that the
aerofoil lies at zero angle of attack to the mean flow. A system of (right-handed) cartesian co-
ordinates is defined such that the mean flow is in the positive x direction, the aerofoil leading edge
is coincident with the z-axis, and the y-axis is normal to the aerofoil surface. Then the aerofoil lies
in the half-plane y ¼ 0;xX0; and the mean flow velocity is Uex; where ex is a unit vector in the
positive x direction. The x; y and z directions may be described as streamwise, vertical and
spanwise, respectively.

The mean flow Mach number is defined as M ¼ U=c0; where c0 is the speed of sound, which is
assumed constant throughout the fluid. As the mean flow is supersonic, M > 1 throughout the
following analysis. However, neither the solution to be derived nor the subsonic solution of
Chapman [1] are applicable in the limit M-1; and the transonic case must be considered
separately.

Superimposed upon the mean flow is some convected vortical disturbance, referred to as the gust.
It is assumed that the form of this gust is known, but to obtain general formulae an arbitrary form
must be considered. This vortical gust will be associated with a velocity field, which on striking the
aerofoil generates a sound field. It is assumed that the pressure fluctuations within this sound field are
of small enough amplitude relative to the mean pressure that linear theory may be applied.

It is important to note that the incoming gust is a vorticity field, since the case of an incoming
sound field would be rather different. The case of an incoming sound field results in a Sommerfeld
half-plane diffraction problem, with the incoming acoustical energy being scattered by the
aerofoil, but with no new acoustical energy being generated. By contrast, in the problem treated
here, the incident energy is all in the vortical field, and some of this energy is converted to
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Fig. 1. Co-ordinate system for the study of a flat-plate aerofoil at rest in a mean flow of speed U ; with a convected gust

present in the fluid. The aerofoil occupies the plane y ¼ 0; xX0:
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acoustical energy at the leading edge. Thus the present problem is one of noise generation, as
opposed to scattering. A further physical difference that would make a large impact on the
formulation of the problem is that the incoming vorticity field moves at the mean flow velocity,
while the velocity of an incoming sound field would be a sum of the mean flow velocity and the
propagation velocity of the sound relative to the fluid. Also, in a Sommerfeld problem the
incoming field is generally modelled as a plane wave, which by its nature will strike the entire
leading edge. However, in the vorticity problem, the nature of the turbulent vorticity field is such
that there exist highly localized regions of vorticity, which strike only a small region of the leading
edge, leading to a very different form of sound field. Thus in a Sommerfeld problem the scattered
field exists in the region within a Mach wedge, while in the vorticity problem realistic gusts should
generate acoustic fields which are concentrated within a Mach cone.

The consideration of the gust and the generated sound field as separate independent entities is
justified by the ‘‘splitting theorem’’ (see Ref. [13, pp. 220–222]). This states that in any linear system
with a constant mean flow velocity, the total velocity perturbation u may be decomposed into the
sum of an irrotational (zero curl) part u1 and a solenoidal (zero divergence) part u2: The linearized
continuity and momentum equations can be shown to be independent of the solenoidal velocity u2;
and consequentially u1 is solely responsible for the pressure fluctuations in the fluid. Thus u1 may be
described as the acoustic particle velocity. On the other hand, the vorticity of the fluid is
independent of the irrotational velocity u1; so that u2 may be described as the vortical velocity. This
is the velocity field associated with the gust. Then in the linear model these two components behave
independently within the fluid. They are coupled only in the region of solid boundaries, where they
must combine in such a way as to satisfy a boundary condition of zero normal velocity. Thus before
the vortical velocity field u2 strikes the aerofoil, there is no sound, but upon interaction with the
plate an acoustic velocity field u1 is generated in order to satisfy the boundary condition. One
important consequence of the splitting theorem that becomes apparent in the later analysis is that all
sound generation takes place at the leading edge, rather than on the aerofoil surface.

The vortical velocity field u2 is convected with the mean flow of fluid. Other than this
convection, the gust is ‘‘frozen’’ (a result of the linear theory), so that from the perspective of an
observer moving with the mean flow the velocity field u2 is fixed. Given that the natural boundary
condition is one of zero normal velocity on the plate surfaces, it is seen that the important
information required will be the y component of the vortical velocity u2; evaluated in the plane
y ¼ 0: Being frozen but convected, this can be a function of time t and streamwise displacement x
only in the combination t � x=U : Then the required velocity component is described by a function
f ðt � x=U ; zÞ; which is allowed to be arbitrary so that general formulae are derived. Given a
problem where the vorticity field x ¼ r4u2 is specified, rather than the required velocity
component, it is a straightforward procedure to calculate this component in terms of a triple
Biot–Savart integral (see, for example, Ref. [14]). For present purposes however, it seems most
convenient simply to assume the function f ðt � x=U ; zÞ is known.

The acoustic disturbance is described by an acoustic particle velocity u1 and a pressure
perturbation p: Since u1 is irrotational, the disturbance may be described in terms of a velocity
potential j by

u1 ¼ rj; p ¼ �r0

@

@t
þ U

@

@x

� �
j: ð1Þ
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From the linearized continuity and momentum equations (see Ref. [3]), it is known that this
potential must obey the convected wave equation

1

c20

@

@t
þ U

@

@x

� �2

j�r2j ¼ 0: ð2Þ

It may be deduced that j must be an odd function of the vertical co-ordinate y: This arises
from the symmetry of the system, and may be shown from consideration of the velocity fields.
Since the vertical component of the gust velocity is equal on either side of the plate surface,
the zero normal velocity condition implies that so too must be the acoustic velocity, and so the
resulting acoustic velocity throughout the space will be an even function of y: Thus @j=@y
is even, and so j is an odd function of y: Then from Eq. (1) the pressure must be an odd
function of y: However, since the plate supports a pressure difference between its upper and
lower surfaces, the potential may be discontinuous across the plate. The condition of zero normal
velocity on the plate surfaces means the sum of the y components of the gust velocity u2 and the
acoustic velocity u1 must be zero on the half-plane y ¼ 07; xX0: This boundary condition can be
extended to the entire plane y ¼ 0 by noting that in the region upstream of the leading edge the
acoustic velocity is identically zero, since all noise generated at the edge is swept downstream in
the supersonic mean flow. Thus, in terms of a Heaviside unit step function, the boundary
condition is

@j
@y

¼ �f ðt � x=U ; zÞHðxÞ ð y ¼ 07Þ: ð3Þ

To guarantee that a unique and physically sensible solution is obtained, the solution must obey
causality and radiation conditions. Thus it is required that no acoustic field exists before the initial
interaction between the gust and the aerofoil, and also that the field be outgoing at infinity.

For convenience a set of Doppler adjusted co-ordinates is defined by

%x ¼ x=ðM2 � 1Þ; %y ¼ y=ðM2 � 1Þ1=2; %z ¼ z=ðM2 � 1Þ1=2: ð4Þ

These allow the final formulae and also the equations for Mach cones and wedges to be
expressed in a compact form. The form of the co-ordinates makes it plain that the solution is not
applicable in the limit M-1þ: In the subsonic work of Chapman [1,2] a similar set of
co-ordinates is used, incorporating factors ð1� M2Þ�1=2; which is not applicable in the limit
M-1�: (The transonic problem must be considered separately, as the transonic governing
equation is not the usual convected wave equation.) Chapman [15] argues that his variables are
the fundamental scaled co-ordinates for subsonic aeroacoustics, and the fact that the above
supersonic counterparts to these appear to account for all the free Doppler factors in the
following formulae points to their being just as fundamental, although no detailed discussion of
this shall be given here.

3. Solution

The problem is solved by the application of Fourier transforms. A transform from the space
variables ðx; zÞ to the wavenumbers ðk;mÞ; and from the time t to the frequency o is effected by the
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application of a Fourier transform pair, using the definition

Fðk; y;m;oÞ ¼
Z

N

�N

Z
N

�N

Z
N

�N

jðx; y; z; tÞeiðot�kx�mzÞ dx dz dt; ð5Þ

jðx; y; z; tÞ ¼
1

ð2pÞ3

Z
N

�N

Z
N

�N

Z
N

�N

Fðk; y;m;oÞe�iðot�kx�mzÞ dk dm do: ð6Þ

To find causal solutions to Eq. (2) the o contour in the inversion integral (6) must be taken to lie
above all singularities in the complex o plane. This is a standard result in the acoustics literature,
and the argument that shows that it gives causal solutions is due to Lighthill [16]. The variables x;
z and t are always assumed to be real, while complex values of the variables k; m and o may be
found to be useful. When utilizing complex variables, the real and imaginary parts of a variable
shall be denoted by subscripts r and i; respectively.

Transforming the convected wave equation yields the equation

@2F
@y2

� g2F ¼ 0; ð7Þ

where gðk;m;oÞ is a function defined by

gðk;m;oÞ ¼ k2 þ m2 �
ðo� UkÞ2

c20

� �1=2

; ð8Þ

with the branch of the square root chosen such that Reðgðk;m;oÞÞX0 for real k: Now, since j is
an odd function of y; so too is F: Then the solution of Eq. (7) which decays as j yj-N is

Fðk; y;m;oÞ ¼ Aðk;m;oÞ sgnð yÞe�gðk;m;oÞj yj; ð9Þ

where Aðk;m;oÞ is a function to be determined.
A transform of the gust term, which takes advantage of the coupling of the x and t dependence

of the gust, is defined by

F ðo;mÞ ¼
Z

N

�N

Z
N

�N

f ðt0; zÞeiðot0�mzÞ dt0 dz; ð10Þ

where t0 ¼ t � x=U : This is simply the transform of the gust shape as seen at the leading edge,
where all the sound is generated. Transforming the boundary condition (3) in terms of the above
gust transform gives

@F
@y

¼
�iUF ðo;mÞ
o� Uk

ð y ¼ 07Þ; ð11Þ

where in order to ensure the convergence of the integral, o has been assumed to have a small
positive imaginary part, which is consistent with the inversion integral in the o plane.
Differentiating the general solution (9) with respect to y and letting y tend to zero gives a simple
condition which may be equated to Eq. (11), leading to an expression for the function Aðk;m;oÞ:
Inserting this into solution (9) gives the particular solution

Fðk; y;m;oÞ ¼
iUF ðo;mÞ sgnð yÞe�gðk;m;oÞj yj

ðo� UkÞgðk;m;oÞ
: ð12Þ
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Inserting this solution into the inverse transform (6) gives the potential j as a triple integral

jðx; y; z; tÞ

¼
1

ð2pÞ3

Z
N

�N

Z
N

�N

Z
N

�N

iU sgnð yÞF ðo;mÞ
ðo� UkÞgðk;m;oÞ

e�iðot�kx�mzÞe�gðk;m;oÞj yj dk dm do: ð13Þ

This integral is complicated somewhat by the presence of the pole term ðo� UkÞ�1: However,
the primary interest in this paper is in the acoustic pressure rather than the potential. Then
Eq. (1) for the pressure in terms of the potential is applied to the above expression for j: The
differential operators are transformed and taken inside the integral, giving a term o� Uk: Thus
the pole term is cancelled by the transformed operators, leaving a simpler expression for the
acoustic pressure:

pðx; y; z; tÞ

¼
�r0Mc0 sgnð yÞ

ð2pÞ3

Z
N

�N

Z
N

�N

Z
N

�N

F ðo;mÞ
gðk;m;oÞ

e�iðot�kx�mzÞe�gðk;m;oÞj yj dk dm do: ð14Þ

This pressure integral may be partially integrated for an arbitrary gust, since the gust transform
term F ðo;mÞ is independent of the streamwise wavenumber k: The k-dependence of the triple
integral is

K ¼
Z

N

�N

eikx�gðk;m;oÞj yj

gðk;m;oÞ
dk: ð15Þ

This integral is of a form which is fairly common in the solution of wave diffraction problems (see
for example Ref. [17]). The essential feature of the integrand is the location of the branch points,
which occur at points k for which gðk;m;oÞ ¼ 0: These points are the roots of a quadratic
equation, which are straightforwardly calculated and labelled k7; where

k7 ¼
Mo=c0

M2 � 1
7
ðo2=c20 þ m2ðM2 � 1ÞÞ1=2

M2 � 1
: ð16Þ

For definiteness it is specified that for real m and o the positive root is taken.
For real m and o the branch points both lie on the real k-axis. To determine the

required deformations to the integration contour and the choice of branch cuts, a method due
to Landau and Lighthill for finding the causal solution of wave problems (see, for example,
Ref. [18, pp. 36–37]) is applied. This method is based upon the frequency o being taken to be
positive with a small positive imaginary part e (consistent with the choice of contour in the o
plane), and the new locations of the branch points in the complex k-plane are determined. Their
locations relative to the real axis then dictate the choice of contour, which must be deformed off
the real axis when e is set to zero, returning the branch points to the real axis. Then when the
required contours are known, useful branch cuts may be determined.

For o ¼ or þ ie then, the branch point equation (16) is studied. For the special case m ¼ 0 it is
found that k7 ¼ ðo=c0Þ=ðM81Þ; so both branch points are in the first quadrant of the complex
k-plane. Then increasing jmj; the branch points move off in opposite directions, on curves which
asymptote to the horizontal line ki ¼ ðMe=c0Þ=ðM2 � 1Þ; which is in the upper half-plane. The
crucial point is that the branch points always lie in the upper half of the k-plane. Thus the
integration contour, lying on the real k-axis, runs below the branch points. This indicates that
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when e is allowed to tend to zero, returning the branch points to the real axis, the integration
contour must be deformed in such a way that it continues to run below kþ and k�:

The two possible factorizations of gðk;m;oÞ are

gðk;m;oÞ ¼ 7iðM2 � 1Þ1=2ðk � kþÞ
1=2ðk � k�Þ

1=2: ð17Þ

The square roots in the above expression are defined such that for real k > kþ the roots are
positive. Then given that k7 lie in the upper half-plane, the phase of each of the square roots in
the above factorizations is calculated at various locations along the real k-axis, and thus the phase
of both possible values of gðk;m;oÞ for all real k is found. It is found from application of the
condition Reðgðk;m;oÞÞX0 for real k that only one of the possible factorizations is appropriate,
namely the one with the þ sign. Then the integral is

K ¼
Z

N

�N

eikx�iðM2�1Þ1=2ðk�kþÞ1=2ðk�k�Þ1=2j yj

iðM2 � 1Þ1=2ðk � kþÞ
1=2ðk � k�Þ

1=2
dk: ð18Þ

Since the integrand has no branch point at infinity, a single branch cut is chosen, namely a straight
line between the branch points.

Consider first evaluating the solution by closing the path of integration with the addition of a
semicircle in the lower half of the k-plane (see Fig. 2a). If k is denoted by jkjeik along this
semicircle, the above choice of phase for g implies that for large jkj;

jeikx�gj yjjBjeikðx�ðM2�1Þ1=2j yjÞjBe�jkj sin kðx�ðM2�1Þ1=2j yjÞ: ð19Þ

Now since k takes values between �p and 0, the integrand in Eq. (18) decays exponentially as
jkj-N so long as x � ðM2 � 1Þ1=2j yj is negative. In this case the inclusion of the contour at
infinity leaves the value of the integral unchanged. Then the fact that the integrand is regular
throughout the lower half-plane means that by Cauchy’s theorem the entire contour integral takes
the value zero. Thus, the acoustic pressure is found to be zero in the region x � ðM2 � 1Þ1=2j yjo0:
This is a direct result of the fact that there is a supersonic mean flow: it is a statement that there is
a large upstream region which the radiated acoustic field does not enter, because the sound
is being convected downstream from the source at the leading edge. Thus a Mach wedge is
generated, with its apex at the leading edge. The equation of this wedge is readily expressed in
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Fig. 2. Integration contours in the complex k-plane. The branch points kþ and k� are represented by small circles, and

the line between these points is the branch cut: (a) closure of the contour in the lower half-plane with a semicircle

k ¼ jkjeik; for the region upstream of the Mach wedge; (b) closure of the contour in the upper half-plane; the contour is

deformed onto an elliptical path around the branch points, for the region downstream of the Mach wedge.
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terms of the adjusted co-ordinates as %x ¼ j %yj: In the ðx; yÞ co-ordinates it meets the plane y ¼ 0 at
an angle m ¼ sin�1ð1=MÞ ¼ tan�1ððM2 � 1Þ�1=2Þ; referred to as the Mach angle. In the ð %x; %yÞ
co-ordinates the Mach angle is fixed at p=4 radians regardless of Mach number, as these
co-ordinates are defined in such a way as to incorporate Doppler factors.

In the region downstream of the wedge, an argument similar to that above shows that the
integration contour may be closed with an arc at infinity in the upper half-plane. Now since
there are no singularities in the k-plane other than the branch points, the contour may be
deformed on to any closed curve (integrated anti-clockwise) which encloses both branch
points. A change of space variables is introduced, and then an appropriate elliptical contour in the
complex k-plane is defined. Then it is found that integral (18) may be reduced to a standard
integral.

A useful change of co-ordinates is

x ¼ r cosh y; ðM2 � 1Þ1=2y ¼ r sinh y; ð20Þ

where

r ¼ ðx2 � ðM2 � 1Þy2Þ1=2; y ¼ tanh�1ððM2 � 1Þ1=2y=xÞ: ð21Þ

Initially the region y > 0 (i.e., y > 0) is considered, and the result is then extended by ones
knowledge of the symmetry of the problem.

In the complex k-plane the point kc is defined as being halfway along the branch cut, i.e.,

kc ¼ 1
2
ðkþ þ k�Þ ¼

Mo=c0

M2 � 1
: ð22Þ

The appropriate substitution is then defined by

k ¼ kc þ ðkþ � kcÞ coshðyþ isÞ ð�ppsppÞ: ð23Þ

This is a parameterization of an ellipse in the complex k-plane, centered at kc with its major axis
along the branch cut, of sufficient size to enclose the branch points (see Fig. 2b). Thus, as
discussed above, it is a suitable integration contour for the integral.

Changing the variables in the integrand gives

K ¼
eikcr cosh y

ðM2 � 1Þ1=2

Z p

�p
eirðkþ�kcÞ cos s ds ¼

eikcr cosh y

ðM2 � 1Þ1=2
2p J0ððkþ � kcÞrÞ: ð24Þ

Here J0 is the Bessel function of the first type, of order zero. The final step in the above
calculation is facilitated by a standard integral for the Bessel function, as given in, for example,
Ref. [19, Eq. 9.1.21]. Returning to the original variables gives

K ¼
2peiMðox=c0Þ=ðM2�1Þ

ðM2 � 1Þ1=2
J0

o2

c20
þ m2ðM2 � 1Þ

� �1=2ðx2 � ðM2 � 1Þy2Þ1=2

M2 � 1

 !
: ð25Þ

The advantage of the Doppler-adjusted co-ordinates (Eq. (4)) can now be seen: in the above
formula both the argument of the Bessel function and the exponent are more simply expressed in
terms of these co-ordinates.
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Inserting expression (25) into the general pressure formula (14) gives the general solution for the
pressure field inside the Mach wedge as

pðx; y; z; tÞ ¼
�r0Mc0 sgnð yÞ

ð2pÞ2ðM2 � 1Þ1=2

Z
N

�N

Z
N

�N

F ðo;mÞe�ioðt�M %x=c0Þeimz

	 J0 o2=c20 þ m2ðM2 � 1Þ
� 	1=2

ð %x2 � %y
2Þ1=2


 �
dm do: ð26Þ

Recall the conditions that the above integral is applicable only inside the Mach wedge %x > j %yj; and
that when evaluating this integral for specific gusts, the causality condition dictates that the
integration contour in the complex o-plane should run above any singularities.

This is the most general expression available for a gust of arbitrary form. The complexity of the
term in m and o inside the Bessel function means that the actual evaluation of this integral for
specific gusts can be very difficult, though it is possible in several cases which are of considerable
interest. There are two notable cases in which at least one of the integrals may be performed
exactly. The first of these is the case of a two-dimensional gust, i.e., a gust with a velocity profile
which is independent of the spanwise variable z: The other case is that of a gust with a velocity
profile which has a Dirac delta function dependence in either the streamwise or the spanwise
direction. Such gusts are mathematical idealizations, but they are useful because they relate to
simple physical situations which are easily understood, yet which are revealing about the
behaviour of more general gusts. For more complex gust profiles however, it is found that
evaluation of the pressure integral (26) can be difficult. Thus it is beneficial to derive an
asymptotic approximation which will be easier to evaluate for a certain class of physically
interesting gusts.

4. Approximation for gusts localized in the span direction

In the well-studied case of a point source in supersonic flow a Mach cone is generated. A source
which is distributed over some finite localized area produces a region of disturbance which at a
large distance from the source appears largely conical. Gusts which are localized in the span
direction lead to such a localized source at the leading edge, and thus the acoustic field far from
the leading edge may be modelled as conical. In aeroengine applications, such localization of the
incident gusts is expected. Without loss of generality it is assumed that the centre of the vortical
disturbance is located at z ¼ 0; so that the field is concentrated within the cone %x > ð %y2 þ %z2Þ1=2:
Then for such localized gusts a simple approximation valid inside this cone may be derived.

The first step is to introduce a change of variable, which shall simplify the argument of the
Bessel function with relation to the frequency o: Then an appropriate approximation to the Bessel
function is introduced, which is valid for large values of the argument. Manipulation of the
resulting double integral leads to an integral in the new variable which may be approximated by
standard stationary phase methods, leaving an integral only over o; which is of a far simpler form
than the exact result (26).

Changing the variables then, the appropriate substitution is

m ¼
o
c0

ðM2 � 1Þ�1=2 sinh w: ð27Þ
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The application of this to the pressure integral (26) is straightforward, but leads to a rather large
expression which is not given here. The Bessel function in this expression, which has argument
ðo=c0Þð %x2 � %y2Þ1=2cosh w; is replaced with the standard Hankel approximation, given by
Abramowitz and Stegun [19, Eq. (9.2.1)] as

J0ðaÞC
2

pa

� �1=2

cosða� p=4Þ: ð28Þ

For the Bessel function of order zero, this is accurate throughout the range a > 1: Then looking at
the argument of the present Bessel function, one sees that this approximation is good for
ðo=c0Þð %x2 � %y2Þ1=2 > 1; which means the present approximation shall be least accurate near the
Mach wedge. Since one is deriving an expression valid inside the Mach cone, this is a small part of
the overall field.

For positive real o the integration contour in the complex w-plane can be taken as the real
w-axis, traversed from �N to N: The extension to the case of negative o is by analytic
continuation, by which method it can be shown that the same integration contour is valid for the
case of negative real o: Thus in the resulting double integral both integrations are again from �N

to N:
For convenience a function Gðo; wÞ is defined, given by

Gðo; wÞ ¼ F ðo; ðo=c0ÞðM2 � 1Þ�1=2sinh wÞ cosh1=2w: ð29Þ

The w dependence of the double integral is isolated, and the w integral is labelled IðoÞ: The cosine,
with which the Bessel function was approximated, is equated with a sum of two complex
exponentials, and the integral IðoÞ is thus expressed as a sum of two integrals denoted I7ðoÞ;
defined by

I7ðoÞ ¼
e8ip=4

2ð %x2 � %y2Þ1=4

Z
N

�N

Gðo; wÞeiðo%z=c0Þ sinh we7iðo=c0Þð %x2� %y2Þ1=2cosh w dw: ð30Þ

Each of the above integrals is related to a pressure, the sum of which is the total acoustic pressure
perturbation. The two component pressures are labelled p1 and p2; corresponding to IþðoÞ and
I�ðoÞ; respectively. These pressures are given by

p1;2ðx; y; z; tÞ ¼
�r0Mc0 sgnð yÞ

ð2pÞ2ðM2 � 1Þ

2

p

� �1=2Z N

�N

o
c0

� �1=2

e�ioðt�M %x=c0ÞI7ðoÞ do: ð31Þ

The purpose of approximating the Bessel function was to lead to integrals of the form of
Eq. (30). To reduce these integrals to a standard form one must simplify the exponents, which
may be written iðo=c0Þð%z sinh w7ð %x2 � %y2Þ1=2cosh wÞ: Within the Mach cone, ð %x2 � %y2Þ1=2 > j%zj; and
thus the second bracketed term may be expressed as a phase shifted cosh function of the form
7 %Rhð %x; %y; %zÞ coshðw8bð %x; %y; %zÞÞ: Here %Rh and b are real functions of the space variables and are
uniquely defined by the fact ð %x2 � %y2Þ1=2 > 0: The required functions are easily derived as

%Rhð %x; %y; %zÞ ¼ ð %x2 � %y
2 � %z

2Þ1=2; ð32Þ

bð %x; %y; %zÞ ¼ cosh�1 %x2 � %y2

%x2 � %y2 � %z2

� �1=2
 !

¼ sinh�1 �%z

ð %x2 � %y2 � %z2Þ1=2

 !
: ð33Þ
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The subscript h in the definition of the first of these variables is in reference to the fact that the
level surfaces of this variable are hyperbolic. They lie within the Mach cone, and asymptote to the
cone at large x: It emerges that %Rh is one of the fundamental variables in the supersonic flow
regime. In terms of the above variables, the integrals are

I7ðoÞ ¼
e8ip=4

2ð %x2 � %y2Þ1=4

Z
N

�N

Gðo; wÞe7iðo %Rh=c0Þ coshðw8bÞ dw: ð34Þ

These are now in a standard form for an asymptotic analysis by the method of stationary phase.
The method of stationary phase gives asymptotic approximations to integrals with oscillatory

integrands. The method is discussed in detail by, for example, Borovikov [20, Theorem 1.2], the
basic result being the approximation

IðlÞ ¼
Z

N

�N

exp½ilfðxÞ� f ðxÞ dx

E exp½ilfðx0Þ� f ðx0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

ljf00ðx0Þj

s
exp i

p
4
sgnðf00ðx0ÞÞ

h i
; ð35Þ

where x0 is the stationary phase point, defined by f0ðx0Þ ¼ 0: This approximation is valid for large
values of l:

This result may be applied to integral (34) for I7ðoÞ; leading to an approximation valid for
large o %Rh=c0: Calculation of the result is straightforward, and the details shall not be given here.
The result is

I7ðoÞ ¼
p

2o=c0

� �1=2

e7iðo %Rh=c0Þ 1

%Rh

F ðo;7ðo=c0ÞðM2 � 1Þ�1=2sinh bÞ: ð36Þ

Inserting this into Eq. (31) for the acoustic pressure terms gives the general farfield approximation
as

p1;2ðx; y; z; tÞC
�r0Mc0 sgnð yÞ

ð2pÞ2ðM2 � 1Þ

1

%Rh

	
Z

N

�N

e�ioðt�M %x=c08 %Rh=c0ÞF o;7
o
c0

ðM2 � 1Þ�1=2 tan %yh

� �
do: ð37Þ

This expression utilizes the new variable %yh; an angle, in place of the somewhat cumbersome
variable b: It is defined by

tan %yh ¼ �%z= %Rh: ð38Þ

Approximation (37) is not valid for small %Rh; and so fails very close to the Mach cone, and from
the earlier discussion of the approximation made to the Bessel function it is known that (37) is also
invalid near the wedge. For large x however, it is found from application of the result to specific
examples that the approximation describes most of the acoustic field well. A full discussion of
such examples is deferred to a later paper, but now these equations are used to analyze a single
simple example, which exhibits behaviour typical of the generated fields, and one important result
is pointed out.
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5. Example of application of formulae

To show the use of the results derived above, a single example of the calculation of a fully three-
dimensional sound field is now given. The gust to be considered is of a type which may be classed
‘‘separable normal’’: the velocity function f ðt � x=U ; zÞ is the product of a function of t � x=U

and a function of the streamwise variable z: The gust to be considered is

f ðt � x=U ; zÞ ¼ v0e
�io0ðt�x=UÞe�ðz=aÞ2=2 ; ð39Þ

where v0 is a vertical velocity, o0 is a frequency and a is a parameter specifying the width of the
gust. The Doppler adjusted versions of these variables are defined to match those of the space
variables in the appropriate directions, that is %v0 ¼ v0=ðM2 � 1Þ1=2; %a ¼ a=ðM2 � 1Þ1=2: This gust
form represents a harmonic wave, which has a Gaussian distribution in the span direction, so that
the source is localized. The Fourier transform (10) of the gust is

F ðo;mÞ ¼ ð2pÞ3=2v0adðo� o0Þe�ðmaÞ2=2 ; ð40Þ

where dðaÞ denotes a Dirac delta function. Inserting this into the exact pressure integral (26) gives
an m integral for which no solution could be found. However, for the farfield integral (37), the
presence of the delta function allows the integration to be carried out explicitly. The sum of the
two terms gives the farfield pressure as

pðx; y; z; tÞC
�r0Mc0 %v0 sgnð yÞ

ð2pÞ1=2
%a

%Rh

e�io0ðt�M %x=c0Þ

	 cosðo0 %Rh=c0Þe�ððo0 %a=c0Þ tan %yhÞ
2=2

; ð41Þ

where it is seen that the adjusted co-ordinates have incorporated all of the Doppler terms. From
the derivation of the general farfield equation (37), it is found that the approximation to the Bessel
function is valid in this case for o0ð %x2 � %y2Þ1=2=c0 > 1; and that the final expression was valid for
large o0 %Rh=c0:

The pressure field described by Eq. (41) exhibits several interesting features, some of which are
typical of fields created by other localized gusts. First, note the decay factor %R�1

h ; which is typical
of all three-dimensional supersonic problems. It is comparable to the familiar R�1 decay of
spherical fields in subsonic problems, but in the supersonic case the field decays not with distance
from the source, but rather with distance from the Mach cone. Also, note the complex exponent
with argument o0ðt � M %x=c0Þ: this factor is seen in all cases where the gust is harmonic in nature.
This factor depends on the linear co-ordinate x; yet it comes about from the interference of
spherically spreading waves. At any point within the Mach cone, two wavefronts are incident at
any given time, as some parts of the generated spherically spreading wavefronts attempting to
propagate upstream will meet others generated at a later time propagating downstream. That
these should combine in such a way as to give rise to a function with argument t � M %x=c0 is not
immediately obvious.

The variable %yh takes the value zero in the vertical plane z ¼ 0; and tends to 7p=2 as the Mach
cone is approached. Then the Gaussian term with argument ðo0 %a=c0Þ tan %yh shows that despite the
R�1 decay term, the field does not diverge on the Mach cone, but rather decays to zero. The
exception is in the plane z ¼ 0; where near the Mach wedge pressure appears to become arbitrarily
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large, but this is in the very small region where the approximation is not valid. The Gaussian
shows that for large o0 %a=c0 the field becomes highly directional, having a single lobe around the
vertical plane z ¼ 0; and decaying exponentially away from this plane. A comparison of this field
with exact results (obtained using numerical integration routines in Matlab) shows that the
approximation is largely accurate.

The exact integral (26) may also be used to investigate briefly the region near the Mach wedge,
where the above approximation is not valid. It is of use to define the variable %rh ¼ ð %x2 � %y2Þ1=2;
which is a characteristic variable of two-dimensional sound fields (see Ref. [12]). Inserting the
Fourier transform (40) into the pressure integral (26), the delta function is used to calculate the o
integral first. In the resulting m integral, the Bessel function may be replaced by a Taylor series,
following which the integration is fairly trivial. This gives the expression for the field near the
Mach wedge as

pðx; y; z; tÞ ¼ � r0Mc0 %v0 sgnð yÞe�io0ðt�M %x=c0Þe�ð%z= %aÞ2=2

	 1�
1

4

o0 %rh

c0

� �2

�
1

4

%r2h
%a2

1�
%z2

%a2

� �
þ Oð%r4hÞ

" #
: ð42Þ

From this result it can be seen that at leading order in %rh; i.e., very close to the Mach wedge, the
sound field is unattenuated, and the spanwise shape of the sound field is simply the gust shape
function. Thus the high pressures seen near the Mach angle in the farfield expression (41) are in
fact the points in the sound field where the pressure is greatest. These peak pressures near the
Mach angle turn out to be a general feature of the generated sound fields.

The presence of an unattenuated pressure peak on the Mach wedge can be shown to be an
important general feature of all of the generated sound fields. In the limit %rh-0; the argument of
the Bessel function in the exact pressure integral (26) becomes small, and a power series may be
taken, the leading order term of which is simply 1. Thus in the limiting case the pressure integral
simply becomes a shifted Fourier inversion of Fðo;mÞ; so that at the Mach wedge

pðx;7x=ðM2 � 1Þ1=2; z; tÞ ¼
�r0Mc0 sgnð yÞ

ðM2 � 1Þ1=2
f ðt � M %x=c0; zÞ: ð43Þ

Thus we see the field in this direction does not spread out or attenuate, and the pressure field
shape is a simple (stretched) multiple of the gust shape. The above equation instantly gives the
peak pressure due to any gust.

6. Summary and further work

To summarize, the above formulae are now sufficient to describe the acoustic field generated
when a convected vortical gust strikes a flat plate in supersonic flow. An acoustic pressure field is
generated at the leading edge when the velocity field due to the gust strikes the aerofoil, and this
generated sound field spreads through the fluid at the speed of sound. Since the fluid itself is
moving supersonically the field all moves downstream, and so is contained within the Mach wedge

%x ¼ j %yj: For any given gust, the pressure field is described exactly by Eq. (26). This solution is in
the form of a complicated double integral, which for a given gust form can be computed
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numerically, but which may also be evaluated analytically for certain simple problems. In the
physical problem of interest, the gusts are generally highly localized in space, so that they strike
only a small section of the leading edge and thus generate a field only within a cone within the
wedge. For such gusts the exact integral is often too complicated to yield an exact analytical
solution, but the farfield is in this case well described by the asymptotic approximation given by
the simple integral (37), in terms of variables defined in Eqs. (32) and (38). In all cases, the
pressure peak is on the Mach wedge, where the pressure field does not attenuate as it propagates
to the farfield.

Work is ongoing in the calculation of a number of examples of the fields due to specific gusts.
Both near and far fields are being studied, and formulae (26) and (37) allow a study to be made of
the way in which different gust features, such as sharp edges, affect the generated field. In those
instances where analytical results can not be obtained numerical evaluation is generally
straightforward. A study of two-dimensional sound fields is presented in Part 2 (Ref. [12]).

The linear inviscid theory presented here could be extended beyond the very simple model
geometry to take account of the effects of a side edge or a trailing edge; also, the effects of mean
loading on the blade could be considered.

Acknowledgements

The author wishes to thank C.J. Chapman of Keele University for his patient guidance and
many insightful comments. This work was supported by a grant from the EPSRC.

References

[1] C.J. Chapman, High-speed leading-edge noise, Proceedings of the Royal Society of London, Series A 459 (2003)

2131–2151.

[2] C.J. Chapman, Some benchmark problems for computational aeroacoustics, Journal of Sound and Vibration

270 (3) (2004) 495–508.

[3] J.W. Miles, The Potential Theory of Unsteady Supersonic Flow, Cambridge University Press, Cambridge, 1959.

[4] W.J. Strang, A physical theory of supersonic aerofoils in unsteady flow, Proceedings of the Royal Society of

London, Series A 195 (1948) 245–264.

[5] J.E. Ffowcs Williams, Y.P. Guo, Sound generated by the interruption of a steady flow by a supersonically moving

aerofoil, Journal of Fluid Mechanics 195 (1988) 113–135.

[6] Y.P. Guo, On sound generation by a jet flow passing a semi-infinite aerofoil, American Institute of Aeronautics

and Astronautics Paper No. 89-1070, 1989.

[7] Y.P. Guo, Sound generated by the interruption of a steady flow by a supersonically moving aerofoil, Journal of

Sound and Vibration 128 (2) (1989) 275–286.

[8] Y.P. Guo, Sound generation by a supersonic aerofoil cutting through a steady jet flow, Journal of Fluid Mechanics

216 (1990) 193–212.

[9] Y.P. Guo, Energetics of sound radiation from flow-aerofoil interaction, Journal of Sound and Vibration 151 (2)

(1991) 247–262.

[10] N. Peake, The interaction between a steady jet flow and a supersonic blade tip, Journal of Fluid Mechanics 248

(1993) 543–566.

[11] N. Peake, The scattering of vorticity waves by a supersonic rectangular wing, Wave Motion 25 (1997) 369–383.

ARTICLE IN PRESS

C.J. Powles / Journal of Sound and Vibration 276 (2004) 837–852 851



[12] C.J. Powles, Noise generation by a supersonic leading edge. Part 2: examples of two-dimensional sound fields,

Journal of Sound and Vibration 276 (3–5) (2004) 853–868, this issue.

[13] M.E. Goldstein, Aeroacoustics, McGraw-Hill, New York, 1976.

[14] P.G. Saffman, Vortex Dynamics, Cambridge University Press, Cambridge, 1992.

[15] C.J. Chapman, Similarity variables for sound radiation in a uniform flow, Journal of Sound and Vibration 233 (1)

(2000) 157–164.

[16] M.J. Lighthill, Studies on magneto-hydrodynamic waves and other anisotropic wave motions, Philosophical

Transactions of the Royal Society of London A 252 (1960) 397–430.

[17] B. Noble, Methods Based on the Wiener–Hopf Technique, Pergamon Press, London, 1958.

[18] M.S. Howe, Acoustics of Fluid Structure Interactions, Cambridge University Press, Cambridge, 1998.

[19] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 5th Edition, National Bureau of Standards,

Washington, 1966.

[20] V.A. Borovikov, Uniform Stationary Phase Method, The Institute of Electrical Engineers, Stevenage, 1994.

ARTICLE IN PRESS

C.J. Powles / Journal of Sound and Vibration 276 (2004) 837–852852

10.1016/j.jsv.2003.11.041

	Noise generation by a supersonic leading edge. Part 1: general theory
	Introduction
	The physical system
	Solution
	Approximation for gusts localized in the span direction
	Example of application of formulae
	Summary and further work
	Acknowledgements
	References


